Шепельський Дмитро Георгійович
професор кафедри фундаментальної математики, доктор фізико-математичних наук
Обрані публікації
D.Shepelsky and L.Zielinski The inverse scattering transform in the form of a Riemann–Hilbert problem for the Dullin-Gottwald-Holm equation // Opuscula Math. , 37, no. 1 (2017), 167–187.,
A.Boutet de Monvel, D.Shepelsky and L.Zielinski A Riemann–Hilbert approach for the Novikov equation // SIGMA, 12 (2016), 22 pp.,
S. Kamvissis, D.Shepelsky and L. Zielinski The Robin boundary condition and the shock problem for the focusing nonlinear Schrödinger equation // Journ. of Nonlin. Math. Phys. , 22, No. 3 (2015), 448–473.,
G.Biondini, A.S.Fokas, and D.Shepelsky Comparison of two approaches to the initial-boundary value problem for the nonlinear Schrödinger equation on the half-line with Robin boundary conditions // in: Unified Transform for Boundary Value Problems: : Applications and Advances, eds. A.S.Fokas and B.Pelloni, SIAM, Philadelphia, PA, 2015, 49-60.,
A.Boutet de Monvel and D.Shepelsky The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach // J. Phys. A: Math. Theor., 48 (2015), 035204 (34pp).,
A.Boutet de Monvel and D.Shepelsky A Riemann-Hilbert approach for the Degasperis-Procesi equation // Nonlinearity, (2013), 2081-2107,
A.Its and D.Shepelsky Initial boundary value problem for the focusing nonlinear Schrödinger equation with Robin boundary condition: half-line approach // Proc. R. Soc. A , 469 (2013), 20120199,
A.Boutet de Monvel, D.Shepelsky and L.Zielinski The short-wave model for the Camassa-Holm equation: the Riemann-Hilbert approach // Inverse Problems, 27 (2011), 105006 (17pp),
A.Boutet de Monvel and D.Shepelsky Initial-boundary value problem for the Camassa-Holm equation with linearizable boundary condition // Lett. Math. Phys., 96, no. 1-3 (2011), 123-141,
A.Boutet de Monvel, V.Kotlyarov and D.Shepelsky Focusing NLS equation: long-time dynamics of step-like initial data // International Mathematics Research Notices , (2011), no. 7, 1613-1653.,
A.Boutet de Monvel, V.Kotlyarov, D.Shepelsky and Ch. Zheng Initial boundary value problems for integrable systems: towards the long time asymptotics // Nonlinearity, 23 (2010), 2483-2499,
A.Boutet de Monvel, A.Its and D.Shepelsky Painleve-type asymptotics for the Camassa-Holm equation // SIAM J. Math. Anal. , 42 (2010), 1854-1873.,
A.Boutet de Monvel and D.Shepelsky The Camassa-Holm equation on the half-line with linearizable boundary condition // Comptes Rendus Mathematique , 348, no. 13-14 (2010), 775-780.,
A.Boutet de Monvel and D.Shepelsky Long time asymptotics of the Camassa-Holm equation on the half-line // Ann. Inst. Fourier , 59, No. 7 (2009), 3015-3056,
A.Boutet de Monvel, A. Kostenko, D.Shepelsky and G. Teschl Long-time asymptotics for the Camassa-Holm equation // SIAM J. Math. Anal, 41 (2009), 1559-1588,
A.Boutet de Monvel, V.Kotlyarov and D.Shepelsky Decaying long-time asymptotics for the focusing NLS equation with periodic boundary ondition // International Mathematics Research Notices, No. 3 (2009), 547-577,
A.Boutet de Monvel and D.Shepelsky The Camassa-Holm equation on the half-line: the Riemann-Hilbert approach // J. Geom. Anal. , 18, No. 2 2008), 285-323.,
A.Boutet de Monvel and D.Shepelsky Long-time asymptotics of the Camassa-Holm equation on the line // in: Integrable Systems, Random Matrices, and Applications, Contemporary Mathematics, 458, AMS, 2008, 99-116.,
A.Boutet de Monvel and D.Shepelsky Riemann-Hilbert problem in the inverse scattering for the Camassa-Holm equation on the line // in: Probability, Geometry and Integrable Systems, Math. Sci. Res. Inst. Publ. , 55, Cambridge Univ. Press, Cambridge, 2007, 53-75.,
D.Shepelsky Riemann-Hilbert methods in integrable systems // Encyclopedia of Math. Phys., Elsevier, 2006, 429-435.,
D.Shepelsky and V.Fenchenko Multiparameter reconstruction for a stratified coating on a reflecting suppor // Inverse Problems in Science and Engineering, 14, No. 2 (2006), 111-127,
A.Boutet de Monvel, A.Fokas Integrable nonlinear evolution equations on a finite interval // Commun. Math. Phys. , 263 (2006), 133-172,
A.Boutet de Monvel and D.Shepelsky Initial boundary value problem for the mKdV equation on a finite interval // Annales de l'Institute Fourier, 54, no.5 (2004), 1477-1495.,
A.Boutet de Monvel, A.Fokas and D.Shepelsky The mKdV equation on the half-line // J.Inst. Math. Jussieu, 3 (2004), 139-164.,
Lett. Math. Phys. Analysis of the global relation for the nonlinear Schrödinger equation // Lett. Math. Phys. , 65, no.3 (2003), 199-212.,
A.Boutet de Monvel and D.Shepelsky Reconstruction of a stratified Omega medium and the associated Riemann-Hilbert problem // Inverse Problems, no.5 (2002), 1377-1395.,
D.Shepelsky A Riemann-Hilbert problem for propagation of electromagnetic waves in an inhomogeneous, dispersive Omega waveguide // Math.Phys.Anal.Geom., 3, no.2 (2000), 179-193.,
A.Boutet de Monvel and D.Shepelsky A frequency-domain inverse problem for a dispersive stratified chiral medium // J.Math.Phys. , 41, no.9 (2000), 6116-6129.,
D.Sheen and D.Shepelsky Uniqueness in a frequency-domain inverse problem of a stratified uniaxial bianisotropic medium // Wave Motion, 31, no.4 (2000), 371-385.,
D.Sheen and D.Shepelsky Uniqueness in simultaneous reconstruction of multiparameters of a transmission line // Progress in Electromagnetic Research, PIER 21 (1998), 153-172.,
D.Sheen and D.Shepelsky Inverse scattering problem for a stratified ansiotropic slab // Inverse Problems, 15, no.2 (1999), 499-514.,
A.Boutet de Monvel and D.Shepelsky Inverse scattering problem for a stratified bi-isotropic medium at oblique incidence // Inverse Problems, 14, no.1 (1998), 29-40.,
A.Boutet de Monvel and D.Shepelsky Direct and inverse scattering problem for a stratified nonreciprocal chiral medium // Inverse Problems, 13, no.2 (1997), 239-251.,
A.Boutet de Monvel, M.Shcherbina and D.Shepelsky On the integrated density of states for a certain ensemble of random matrices // Random Oper. Stochastic Equations, 6, no.4 (1998), 331-338.,
A.Boutet de Monvel and D.Shepelsky Inverse scattering problem for anisotropic media // J.Math. Phys., 36, no.7 (1995), 3443-3453.,
D.Shepelsky The inverse problem of reconstruction of the medium's conductivity in a class of discontinuous and increasing functions // Spectral Operator Theory and Related Topics, Advances in Soviet Mathematics, 19, ed. V.A.Marchenko, AMS, Providence, RI (1994), 209-232.,
E.Khruslov and D.Shepelsky Inverse scattering method in electromagnetic sounding theory // Inverse Problems, 10, no. 1 (1994), 1-37.,
D.Shepelsky An inverse spectral problem for a Dirac-type operator with "sewing" conditions // Dynamical Systems and Complex Analysis, Naukova Dumka, Kiev (1992), 104-112.,
D.Shepelsky Characterization of the data of an inverse problem of electromagnetic sounding in a class of discontinuous functions // Operator Theory, Subharmonic Functions, Naukova Dumka, Kiev (1991), 154-164.,